同时,新思界产业研究中心出具的《2021年全球及中国3D打印弹性材料产业深度研究报告》显示,全球3D打印弹性体市场规模将从2021年的1.8亿美元增长到2026年达到6.2亿美元,复合年增长率为28.1%。
而2020年,TPU材料就已经主导了3D打印弹性体市场,且预计在未来时间段内仍将保持其主导地位,2021-2026年,TPU材质的材料将成为3D打印弹性体市场的领导部分。

随着3D打印TPU的广泛应用,也对TPU性能提出了更高的要求。目前人们开发出的TPU种类很多,力学性能跨度也非常大,兼具橡胶与塑料的一些优良性能。同时,TPU还具有卓越的耐磨性能、耐老化性、高回弹性等,被广泛应用于工业、生活、医疗、军工等方面。
但TPU也有一个明显缺点,普通TPU属于易燃物,其极限氧指数(LOI)仅为16%~18%,遇火会迅速燃烧并分解产生大量有毒烟雾。
而阻燃TPU是通过在TPU基材中引入无机或有机阻燃元素,如一些含有磷、氮、硼、铝、镁以及卤素的单元。早期,卤素阻燃剂被广泛应用于高分子材料的阻燃改性,但卤素在燃烧时会产生大量有毒气体,因此慢慢被淘汰。
目前人们已将研究重点转向更加环保的无卤阻燃技术。TPU的阻燃改性可按阻燃剂与高分子基材之间的结合情况,分为反应型本征阻燃改性和添加型阻燃改性。
本文将从以下方面来介绍阻燃TPU研究的进展。
反应型阻燃改性
如以含磷多元醇作为聚合单体制备的本征阻燃TPU。使用磷系阻燃多元醇来改性 TPU,磷元素通过聚合反应引入到高分子链中,其作为多元醇结构中的一部分,在燃烧过程中,磷元素会以PO·自由基的形式释放并捕捉高分子基体燃烧生成的自由基,从而猝灭燃烧反应,同时促进基体成碳,达到阻燃的效果。
而含氮阻燃剂主要是通过在高温下分解产生而NH3、N2等不燃气体起到阻燃效果。
反应型阻燃改性一般具有阻燃作用持久稳定,对材料其他性能影响较小的优势,但改性过程相对复杂,涉及到聚合反应。
添加型阻燃改性
需要注意的是,添加的阻燃剂需要考虑与基体的相容性,不然容易析出,影响阻燃效果及TPU的机械性能。添加型阻燃改性可根据阻燃剂的类别,分为无机类阻燃剂添加,有机类阻燃剂添加,以及有机-无机复合添加。
无机阻燃剂添加
有机阻燃剂添加
有机阻燃剂主要有早期的卤化物以及目前人们普遍关注的磷、氮类有机化合物,有机阻燃剂的阻燃机制随组分不同而不同。卤化物的阻燃效率高是因为燃烧时,卤化物可产生自由基抑制聚合物燃烧,同时生成大量不燃烟气,稀释可燃气体,以达到阻燃目的,但缺点是生成的烟气毒性大,因此逐渐被淘汰。
磷化物的阻燃机制与卤素类似,也是可以生成自由基,以阻止燃烧(氧化反应) 基本反应的进行,其优点是不会产生有毒气体,同时还会促进成碳,提高碳层强度,因此备受人们关注。
含氮类阻燃剂主要是气相阻燃,燃烧时生成大量不燃气体, 稀释氧气,抑制氧化反应进行,也有部分含氮化物, 如受阻胺,同样可以产生自由基,阻止氧化反应。
近年来,由于含磷、氮类的有机阻燃剂阻燃效果较为明显,因此对该类阻燃剂研究较深。如采用一步包埋法将双酚A-双(二苯基磷酸酯)(BDP)与单体混合制备了BDP阻燃改性TPU。研究结果表明,在研究范围内,阻燃TPU的氧指数和UL 94 阻燃等级随着阻燃剂BDP含量的增加而提高,但其力学性能如拉伸强度和100%定伸模量则随阻燃剂加入量的增加,表现出增大后减小的趋势。当阻燃剂BDP质量分数为9%时, 阻燃TPU的综合性能达到最佳,其氧指数达到26% ,UL 94阻燃等级达到V-1级。
已有研究表明,有机阻燃剂阻燃效果明显,与TPU基材的相容性好,其添加量可比无机阻燃剂多,力学性能的影响也比无机阻燃剂小,但在抑烟方面功效并不突出,只有少量有机阻燃剂具有一定抑烟效果。
有机-无机复合添加
不论是无机阻燃剂,还是有机阻燃剂,它们均各有优缺点,因此,人们越来越关注将有机阻燃和无机阻燃剂结合使用,发挥协同效应,扬长避短,达到更好的阻燃效果。
将次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MCA)复配后添加到TPU中制备阻燃TPU材料。当添加质量分数为11%的阻燃剂(AHP与MCA的质量比为1∶2)时,阻燃TPU垂直燃烧达到 UL 94 V-0,LOI为 25.2% 。阻燃剂 AHP/MCA 的加入能提升复合材料的热稳定性,同时促进材料成炭。
采用聚磷酸铵(APP)、次磷酸铝(AHP)、二乙基次膦酸铝(ADP)为阻燃剂, 以 1-乙基-3-甲基咪唑六氟磷酸盐离子液体为协效阻燃抑烟剂,通过熔融共混法制备了一系列TPU复合材料,并研究其阻燃抑烟性能。结果表明, [EMIM]PF6 单独作为阻燃剂对 TPU 材料具有比较好的阻燃及抑烟效果,且其作为协效阻燃剂, 与APP、AHP、ADP阻燃剂协效对TPU复合材料 具有更佳的阻燃及抑烟效果。
有机无机阻燃剂按一定方式结合形成杂化材料后,其阻燃效果较单一阻燃剂有明显提升, 但这其中涉及到的阻燃改性机制也更加复杂,尤其是无机-有机的协同效应,还有待进一步研究。
总的来说,从单体结构入手,在聚合时通过化学键引入阻燃基团的反应型阻燃改性,可以有效提高材料的结构稳定性以及阻燃耐久性,但该方法过程复杂,局限性大。而添加型改性,工艺相对简单,且阻燃剂来源广泛,复合材料性能提升空间大,研究和应用也相对较多。
添加的阻燃剂,各有优缺点。无机阻燃剂一般具有催化阻燃效果,强化碳层结构,以及抑烟等优势,但缺点是与TPU基体相容性不好,分散性差,耐久性低,添加量也不宜过大。有机阻燃剂一般易于与基体混合,也具备催化阻燃效果,但效率普遍不高,且稳定性也有欠缺。通过有机-无机复合使用,如有机阻燃剂包覆无机阻燃剂,或者在二维无机阻燃剂上负载有机阻燃剂,不仅可以提高相容性,还可加大有机物的稳定性,强化阻燃效率。因此,将有机阻燃剂和无机阻燃剂进行杂化,让其发挥协同效应,将是今后TPU阻燃改性研究的重要发展方向。